On normal forms for parabolic Monge-Ampère equations
نویسنده
چکیده
Parabolic Monge-Ampère equations are divided into contact inequivalent classes, for each of which a normal form is given. Two of these are new in the C category.
منابع مشابه
Normal forms for parabolic Monge-Ampère equations
We find normal forms for parabolic Monge-Ampère equations. Of these, the most general one holds for any equation admitting a complete integral. Moreover, we explicitly give the determining equation for such integrals; restricted to the analytic case, this equation is shown to have solutions. The other normal forms exhaust the different classes of parabolic Monge-Ampère equations with symmetry p...
متن کاملHarnack Inequality for Time-dependent Linearized Parabolic Monge-ampère Equation
We prove a Harnack inequality for nonnegative solutions of linearized parabolic Monge-Ampère equations −t φt − tr((Dφ)Du) = 0, in terms of a variant of parabolic sections associated with φ, where φ satisfies λ ≤ −φt detDφ ≤ Λ and C1 ≤ −φt ≤ C2.
متن کاملEvans-krylov Estimates for a Nonconvex Monge Ampère Equation
We establish Evans-Krylov estimates for certain nonconvex fully nonlinear elliptic and parabolic equations by exploiting partial Legendre transformations. The equations under consideration arise in part from the study of the “pluriclosed flow” introduced by the first author and Tian [28].
متن کاملON A PRIORI C1,α AND W2,p ESTIMATES FOR A PARABOLIC MONGE-AMPÈRE EQUATION IN THE GAUSS CURVATURE FLOWS
This paper establishes Hölder estimates of Du and Lp estimates of D2u for solutions u to the parabolic Monge-Ampère equation −Aut + ( det D2u)1/n = f .
متن کامل